

Quick Start Guide
January 2024

Amazon GuardDuty & Kasten K10

Amazon GuardDuty & Kasten K10 Quick Start Guide

Amazon GuardDuty & Kasten K10
Below is an example guide of how someone may be able to deploy Amazon GuardDuty in
conjunction with Kasten by Veeam’s Kasten K10 in an Amazon Elastic Kubernetes Service (EKS)
cluster to ensure a security posture fit for your deployment that correlates and heightens events
that are associated with custom Kasten K10 resources.

Configuration of Amazon GuardDuty

First, make sure you have access rights to GuardDuty in your AWS account. Once you do, go to
GuardDuty and turn on “EKS Protection”.

Next, deploy a cluster in EKS; here we’re deploying a simple cluster with three m6a.large
nodes. Once the cluster has been set up, navigate to “Logging” as seen below, and click
“Manage logging” in the upper right corner:

Turn on “audit” logs, and click save as seen below:

Amazon GuardDuty & Kasten K10 Quick Start Guide

This could take a few minutes, but once done you should have a new CloudWatch group called
/aws/eks/CLUSTER_NAME/cluster with two log streams prefixed with kube-apiserver-
audit-*.

Next, let’s deploy the latest version of Kasten K10 and wait for all the pods to be running.

It’s as simple as that to start getting kube audit logs from your cluster into CloudWatch and
GuardDuty.

Seeing Kasten K10 events in CloudWatch Logs

Now that we have Kasten K10 installed in our EKS cluster, let’s see how we can get audit logs
to show up in CloudWatch. Let’s first list all the available passkeys and then describe the
K10MasterKey:

kubectl get passkeys
kubectl describe passkeys k10MasterKey

Navigate to the CloudWatch logs as defined above, and search for
/apis/vault.kio.kasten.io/v1alpha1/passkeys/k10MasterKey (You may need to look in
the second log stream if not found in the current one as EKS produces two log streams for the
audit logs).

What you should see is the following:

Amazon GuardDuty & Kasten K10 Quick Start Guide

{
 "kind": "Event",
 "apiVersion": "audit.k8s.io/v1",
 "level": "Metadata",
 "auditID": "a3371b5b-4d23-41d7-b7c6-ab8d50ac6a02",
 "stage": "ResponseComplete",
 "requestURI":
"/apis/vault.kio.kasten.io/v1alpha1/passkeys/k10MasterKey",
 "verb": "get",
 "user": {
 "username": "kubernetes-admin",
 "uid": "aws-iam-authenticator:{ACCOUNT_ID}:{ACCESS_KEY_ID}",
 "groups": [
 "system:masters",
 "system:authenticated"
],
 "extra": {
 "accessKeyId": [
 "{ACCESS_KEY_ID}"
],
 "arn": [
 "arn:aws:sts:: {ACCOUNT_ID}:assumed-
role/EKSAdminRole/EKSGetTokenAuth"
],
 "canonicalArn": [
 "arn:aws:iam:: {ACCOUNT_ID}:role/EKSAdminRole"
],
 "sessionName": [
 "EKSGetTokenAuth"
]
 }
 },
 "sourceIPs": [
 "{IP_ADDRESS}”
],
 "userAgent": "kubectl/v1.25.0 (darwin/arm64) kubernetes/a866cbe",
 "objectRef": {
 "resource": "passkeys",
 "name": "k10MasterKey",
 "apiGroup": "vault.kio.kasten.io",
 "apiVersion": "v1alpha1"
 },
 "responseStatus": {
 "metadata": {},
 "code": 200
 },
 "requestReceivedTimestamp": "2022-12-22T22:04:47.213440Z",
 "stageTimestamp": "2022-12-22T22:04:47.216982Z",
 "annotations": {
 "authorization.k8s.io/decision": "allow",
 "authorization.k8s.io/reason": ""
 }
}

As you can see here unlike the local k3d cluster audit log, AWS provides the account id and
access key id of the requester IAM. In this case we assumed the EKSAdminRole and so the

Amazon GuardDuty & Kasten K10 Quick Start Guide

access key id was that of this associated IAM. Note that this was done from the cli and that's
why the IAM information is present.

We can clearly see this was a GET operation on the vault.kio.kasten.io API group's
passkeys resource to get the named resource k10MasterKey.

Now, let’s create a new policy for our default application:

Amazon GuardDuty & Kasten K10 Quick Start Guide

Now when we search for {($.requestURI =
"/apis/config.kio.kasten.io/v1alpha1/namespaces/kasten-io/policies") &&
($.verb = "create")} we should see the following audit event:

Amazon GuardDuty & Kasten K10 Quick Start Guide

{
 "kind": "Event",
 "apiVersion": "audit.k8s.io/v1",
 "level": "Metadata",
 "auditID": "9c884d9d-b68b-4b9d-a361-a47d1849ccf4",
 "stage": "ResponseComplete",
 "requestURI": "/apis/config.kio.kasten.io/v1alpha1/namespaces/kasten-
io/policies",
 "verb": "create",
 "user": {
 "username": "system:serviceaccount:kasten-io:k10-k10",
 "uid": "853192af-7f81-47b7-9558-a19ca20a5555",
 "groups": [
 "system:serviceaccounts",
 "system:serviceaccounts:kasten-io",
 "system:authenticated"
],
 "extra": {
 "authentication.kubernetes.io/pod-name": [
 "dashboardbff-svc-bb8799555-6254b"
],
 "authentication.kubernetes.io/pod-uid": [
 "3457698b-24ae-4990-9b9f-a47001083535"
]
 }
 },
 "sourceIPs": [
 "{IP_ADDRESS}"
],
 "userAgent": "dashboardbff-server/v0.0.0 (linux/amd64)
kubernetes/$Format",
 "objectRef": {
 "resource": "policies",
 "namespace": "kasten-io",
 "name": "default-backup",
 "apiGroup": "config.kio.kasten.io",
 "apiVersion": "v1alpha1"
 },
 "responseStatus": {
 "metadata": {},
 "code": 201
 },
 "requestReceivedTimestamp": "2022-12-22T22:15:27.150188Z",
 "stageTimestamp": "2022-12-22T22:15:27.191005Z",
 "annotations": {
 "authorization.k8s.io/decision": "allow",
 "authorization.k8s.io/reason": "RBAC: allowed by ClusterRoleBinding
\"kasten-io-k10-k10-cluster-admin\" of ClusterRole \"cluster-admin\" to
ServiceAccount \"k10-k10/kasten-io\""
 }
}

Unlike the passkeys describe action which was done using the cli, this was done using the UI
and so we see extra information such as the new userAgent and extra user information
detailing the specific pod this request came from, namely, the dashboard-bff pod.

Amazon GuardDuty & Kasten K10 Quick Start Guide

GuardDuty pulls from these CloudWatch logs and analyzes them against the finding types that
are listed for the Kubernetes Audit logs data source. If any of them are triggered, it will show
up in your dashboard.

Triggering Amazon GuardDuty Kubernetes Findings

The final step is to trigger a finding in Amazon GuardDuty that relates to a Kasten K10 custom
resource. Here we’ll use that passkeys resource again and aim to trigger the
Discovery:Kubernetes/SuccessfulAnonymousAccess finding by creating a
clusterrolebinding to the k10-admin clusterrole with the system:anonymous user; let’s
create this by running:

kubectl create clusterrolebinding anonymous-view --clusterrole=k10-admin --
user=system:anonymous

This will trigger the Policy:Kubernetes/AnonymousAccessGranted Amazon GuardDuty
finding showing that we granted anonymous access within a Kubernetes cluster. Next, we
obtain the query endpoint of our cluster since we’ll need to use curl instead of kubectl to
ensure we aren’t authorized to call the api endpoint:

aws eks describe-cluster --name {CLUSTER_NAME} --query "cluster.endpoint" --
region {AWS_REGION} --output text

With that endpoint in hand let’s now call the passkeys with a GET:

 curl -k
https://{SPECIFIC_ID}.{AWS_REGION}.eks.amazonaws.com/apis/vault.kio.kasten.io
/v1alpha1/passkeys\?limit\=500

Doing this will return the information requested, and it will also trigger the Amazon GuardDuty
finding:

If you click on the finding, you’ll be shown a lot more information including the Resource
affected, Actor, and Action. You’ll find information about your EKS cluster, as well as the action
showing it was a call to listing K10 passkeys:

Amazon GuardDuty & Kasten K10 Quick Start Guide

Conclusion

Amazon GuardDuty configured in conjunction with Kasten K10 for Kubernetes allows for an
enhanced security posture to further protect Kasten K10 data from unknown attacks from
malicious users.

Footnotes

1. https://www.statista.com/statistics/871513/worldwide-data-created/
2. https://www.securitymagazine.com/articles/97046-over-22-billion-records-exposed-in-

2021

