

Red Hat ACS & Kasten K10 Quick Start Guide

Red Hat Advanced Cluster Security with Kasten K10

Below is an example guide of how someone may be able to deploy Red Hat Advanced
Cluster Security in conjunction with Kasten K10 for Kubernetes in an OCP cluster to
ensure a security posture fit for your deployment that correlates and heightens events
that are associated with custom Kasten K10 resources.

Setting up RHACS and Kasten K10 on an OCP Cluster

In this example, we’ll deploy a Red Hat OpenShift cluster on AWS. Once our cluster is
ready, we can install Red Hat Advanced Cluster Security either via Helm or the
OpenShift Operator. Let's go ahead and install via Helm by getting the chart:

helm repo add rhacs https://mirror.openshift.com/pub/rhacs/charts/

We need to ensure we have access to the Red Hat registry at
https://catalog.redhat.com/ before proceeding or else the image pull will fail. For
example, if using docker you can run the following command with your Red Hat
username and password:

docker login -u "$username" -p "$password"

Next, let’s create a stackrox namespace and secret to hold our Red Hat registry

credentials:

kubectl create ns stackrox

kubectl create secret generic redhatcreds -n stackrox \

 --from-file=.dockerconfigjson="$HOME/.docker/config.json" \

 --type=kubernetes.io/dockerconfigjson

Now, let’s install the central services with port forwarding (you can also use an exposed
route or a load balancer, see here for help):

helm install -n stackrox \

 --create-namespace stackrox-central-services rhacs/central-services \

 --set imagePullSecrets.useExisting=redhatcreds

Once installed you should see an admin password listed to be used with the Red Hat
Advanced Cluster Security console. Copy this as we’ll need it.

At this point pods for the centralized services should be creating. Once these are
created, make sure to port forward the central services:

kubectl -n stackrox port-forward svc/central 18443:443

https://catalog.redhat.com/
https://docs.openshift.com/acs/3.73/installing/installing_ocp/install-central-ocp.html

Red Hat ACS & Kasten K10 Quick Start Guide

Now open your browser and go to https://localhost:18443. You should be prompted

for a username and password; use admin and the password copied after helm installed

the centralized services.

The dashboard should show empty with no clusters monitored since we haven’t
installed the secured cluster services yet.

Red Hat ACS & Kasten K10 Quick Start Guide

To do this, navigate to “Platform Configuration” in the left sidebar, and select
“Integrations”; scroll to the bottom and click “StackRox API Token”:

Create an API Token called “Admin” with the “Admin” Role and copy the generated
token

Red Hat ACS & Kasten K10 Quick Start Guide

Next, we need to create the init bundle to allow the cluster to authenticate with

Central. You'll need the roxctl cli and for a Mac can be installed as follows:

curl -O

https://mirror.openshift.com/pub/rhacs/assets/3.70.2/bin/Darwin/roxctl

xattr -c roxctl

chmod +x roxctl

sudo mv roxtl /usr/local/bin

Set the ROX_API_TOKEN environment variable with the copied API token:

export ROX_API_TOKEN=${API_TOKEN}

Set the ROX_CENTRAL_ADDRESS environment variable:

export ROX_CENTRAL_ADDRESS=https://localhost:18443

Now, create the init bundle:

roxctl -e "$ROX_CENTRAL_ADDRESS" central init-bundles generate acs-test --

output cluster_init_bundle.yaml

With the init bundle created, install the secure cluster services on each cluster you

want monitored:

helm install -n stackrox \

 --create-namespace stackrox-secured-cluster-services rhacs/secured-cluster-

services \

 -f PATH_TO_INIT_BUNDLE/cluster_init_bundle.yaml \

 --set imagePullSecrets.useExisting=redhatcreds \

 --set clusterName=acs-test \

Red Hat ACS & Kasten K10 Quick Start Guide

 --set centralEndpoint=central.stackrox:443

This will create the admission-control, collector, scanner-db, and sensor pods. Once

these are all running Red Hat Advanced Cluster Security is ready to use.

Lastly, install the latest version of Kasten K10 through the OperatorHub, by following
the directions found in the Kasten K10 documentation.

Viewing Kasten K10 Audit Logs In OCP Cluster

The audit policy in a Red Hat OpenShift cluster is customizable in the sense that it
allows you to select from three different settings which correlate to the Metadata,

Request, and RequestReceived levels that the kube audit logs at.

Running the following command brings up the config.openshift.io API group’s

APIServer resource which can be edited:

oc edit apiserver cluster

Edit the spec.audit.profile field to one of Default, WriteRequestBodies,

AllRequestBodies to have increasingly more information present in the audit event

that's logged.

Let’s find the nodes and location of the audit logs by running:

oc adm –role=master --path=kube-apiserver/audit.log

Depending on the number of nodes, multiple nodes and audit logs should come up.
Select the node name and location and run the following to see the audit logs:

oc adm node-logs ip-10-0-255-61.us-west-1.compute.internal --path=kube-

apiserver/audit.log

To test this, let’s run the following command to list and describe the k10MasterKey:

kubectl get passkeys

kubectl describe k10MasterKey

Let’s search through the logs to find this audit event (you may need to look through
multiple nodes and locations to find this):

oc adm node-logs ip-10-0-255-61.us-west-1.compute.internal --path=kube-

apiserver/audit.log | jq 'select(.requestURI |

startswith("/apis/vault.kio.kasten.io/v1alpha1"))'

https://docs.kasten.io/latest/install/openshift/operator.html

Red Hat ACS & Kasten K10 Quick Start Guide

We then see the following audit event:

{

 "kind": "Event",

 "apiVersion": "audit.k8s.io/v1",

 "level": "Metadata",

 "auditID": "11aa507b-e3a6-4be6-b5d7-458f4d69dc37",

 "stage": "ResponseComplete",

 "requestURI": "/apis/vault.kio.kasten.io/v1alpha1/passkeys/k10MasterKey",

 "verb": "get",

 "user": {

 "username": "system:admin",

 "groups": [

 "system:masters",

 "system:authenticated"

]

 },

 "sourceIPs": [

 "10.0.117.141"

],

 "userAgent": "kubectl/v1.24.0 (linux/arm64) kubernetes/4ce5a89",

 "objectRef": {

 "resource": "passkeys",

 "name": "k10MasterKey",

 "apiGroup": "vault.kio.kasten.io",

 "apiVersion": "v1alpha1"

 },

 "responseStatus": {

 "metadata": {},

 "code": 200

 },

 "requestReceivedTimestamp": "2022-12-23T20:01:31.603020Z",

 "stageTimestamp": "2022-12-23T20:01:31.605900Z",

 "annotations": {

 "authorization.k8s.io/decision": "allow",

 "authorization.k8s.io/reason": ""

 }

}

Actions against Kasten K10’s custom resources get processed by the kube-apiserver

which then logs the audit event based on the audit policy. These can be from custom
resources created by CRD's or the Aggregated API; Kasten K10's cloud native
architecture natively allows for the kube audit to be able to audit interactions with

Kasten K10, ensuring protection against unauthorized access and misuse of Kasten
K10's underlying Kubernetes structure.

Using RHACS Console to Monitor Kasten K10

With Kasten K10 installed in our cluster, we can view the Red Hat Advanced Cluster
Security dashboard for the kasten-io namespace to get high-level information as to the

security of Kasten K10; Select acs-test from the list of clusters in the top right corner,

and then choose kasten-io from the list of namespaces.

Red Hat ACS & Kasten K10 Quick Start Guide

Here we see policy violations by severity, active images at risk, deployments at most
risk, active aging images, policy violations by category, and compliance by standard.

We can follow links to get more information about any of the data presented here.

If we select “Compliance” from the left side bar, we can scan our environment to run a
compliance check.

 From here we can deep-dive different standards such as NIST SP 800-190 (Application
Container Security Guide) and NIST SP 800-53 (Security and Privacy Controls for
Information Systems and Organizations).

https://csrc.nist.gov/publications/detail/sp/800-190/final
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final

Red Hat ACS & Kasten K10 Quick Start Guide

We can generate the network graph for the kasten-io namespace by selecting

“Network Graph” from the left sidebar and then selecting this namespace. If we select
the gateway pod, we can see the network connections and any anomalous flows Red

Hat Advanced Cluster Security finds:

Since Red Hat Advanced Cluster Security comes with a lot of security policies by default,
such as monitoring kubectl port-forward... and kubectl exec..., if any of these

actions happen on a K10 pod, a violation will show up. These violations are all shown
by clicking on “Violations” in the left sidebar.

Red Hat ACS & Kasten K10 Quick Start Guide

Conclusion

Red Hat Advanced Cluster Security in conjunction with Kasten K10 allows for an
enhanced security posture to further protect Kubernetes data from unknown attacks
from malicious users.

Footnotes

1. You cannot install Red Hat Advanced Cluster Security in a local cluster such as
with K3D or Minikube, or in a Lima VM running x86 ubuntu with K3S installed; it

must be in one of the listed managed Kubernetes services.

	Footnotes

